Journal of Organometallic Chemistry, 149 (1978) C37-C39 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

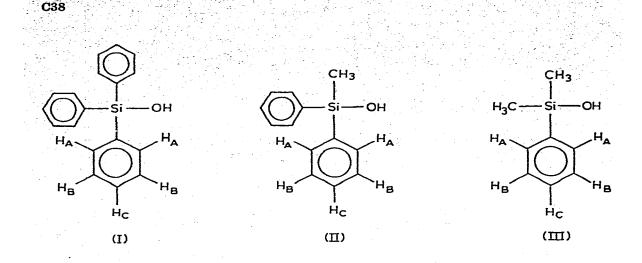
Preliminary communication

THE EFFECT OF TRIS(DIPIVALOMETHANE)EUROPIUM CHELATE ON THE ¹ H NMR SPECTRA OF TERTIARY SILANOLS

A. LYČKA, D. ŠNOBL and J. VENCL Research Institute of Organic Syntheses, 532 18 Pardubice, Rybitví (Czechoslovakia) (Received January 30th, 1978)

Summary

The europium chelate of tris(dipivalomethane) (Eu(DPM)₃) has a marked effect on the proton chemical shifts in the ¹ H NMR spectra of tertiary silanols of the type $(C_6H_5)_x(CH_3)_nSiOH^2$ (x = 3-n, n = 0 - 2). The largest changes were found for the protons of CH₃ groups while those for protons of phenyl groups were smaller. The ¹ H NMR spectra of polymethylpolysiloxanes were not affected by addition of Eu(DPM)₃.


The europium chelate of tris(dipivalomethane) and similar chelates of some lanthanides (known as lanthanide shift reagents) are useful in high resolution nuclear magnetic resonance studies of organic compounds containing hydroxyl groups, e.g. alcohols, phenols, oximes, steroids [1,2,3]. In the field of organosilicon chemistry $Eu(DPM)_3$ was used in the stereochemical assignment of (1-exo-hydroxy-1-endo-methyl-2,3,4,5-tetraphenyl-1-silacyclopentadiene)(cyclopentadienyl)cobalt. This suggested to us that lanthanide shift reagents might be useful for studying other silanols and the preliminary study described below confirms this.

We summarize in Table 1 the effects of stepwise additions of $Eu(DPM)_3$ to the CCl₄ and CDCl₃ solutions of triphenylsilanol (I), methyldiphenylsilanol (II) and dimethylphenylsilanol (III) on the proton chemical shifts at 25°C.

The values of the "bound" shifts ("the bound" chemical shifts for each proton of the molecule form the basis for geometry determination) are used to illustrate the effect under study. These were determined graphically as the slopes of plots of $\Delta\delta$ versus [Eu(DPM)₃] [substrate], according to eq. 1 [5].

$$\delta(Eu) - \delta(S) = \frac{[Eu(DPM)_3]}{[Substrate]}$$
[1]

where δ (S) is the chemical shift of proton signals in the NMR spectra of substrates, and δ (Eu) is the chemical shift of proton signals in the NMR spectra of substrates after addition of the Eu(DPM)₃.

The relative values of "bound" shifts ρ° (the ratio of ρ for each proton to that of proton H_A) were used for comparison. When the concentrations of Eu(DPM)₃ are constant, the values of "bound" shift depend on the initial concentrations of the substrates, [6] so this method of assessing the effect under study is satisfactory.

TABLE 1

Compound	Solvent	Concentration of substrate (mol/l)	HA		^н в,с		СН3	
			ρ	ρ°	ρ	ρ°	ρ	ρ°
I.	CCl ₄	0.074	7.5	1.0	1.0	0.133	_	_
I	CDCl ₃	0.074	3.6	1.0	0.4	0.111		_
п	CCl	0.100	9.6	1.0	1.9	0.198	10.7	1.115
п	CDCI,	0.063	4.3	1.0	0.7	0.163	4.8	1.116
ш	CCI	0.125	9.8	1.0	2.5	0.255	11.1	1.133
шí.	CDCl ₃	0.156	7.9	1.0	1.5	0.190	8.7	1.101

THE VALUES OF "BOUND" SHIFTS ρ AND RELATIVE "BOUND" SHIFTS (ρ° DETERMINED ACCORDING TO EQ. 1) FOR ADDITION OF Eu(DPM)₃ ^a ON ¹ H NMR SPECTRA OF CCl₄ AND CDCl₃ SOLUTIONS OF TERTIARY SILANOLS (I—III) AT 25°C

^aThe six stepwise additions of $Eu(DPM)_3$ covered the $[Eu(DPM)_3]$ [substrate] ratios of 0.1–0.6.

It is clear from Table 1 that the differences in "bound" shifts of protons are considerable. The largest values of paramagnetic shifts of signals are observed for SiCH, groups. The differences in the paramagnetic shifts of phenyl group proton signals measured as a percentage of the shift for SiCH, are lower for H_A protons (90.0%) and lowest for $H_{B,C}$ protons of phenyl groups (20.0%).

The multiplet structure of $H_{B,C}$ proton signals were not resolved. When $Eu(DPM)_3$ was used the paramagnetic shifts of SiCH₃ proton signals were unusually accompanied by considerable broadening and this phenomenon is under investigation in this laboratory. The differences observed for values of ρ° for protons of SiCH₃ groups and H_A in CDCl₃ were equal to those in CCl₄. The values of ρ for compound I (which was measured at the same concentration in both solvents) in CDCl₃ were only ca. 50% of those in CCl₄. It is evident that the nature of the solvent plays an important role.

Furthermore we observed that Eu(DPM)₃ does not change the ¹ H NMR spectra of 1,1,1,3,3,3-hexaalkylsiloxanes-1,3 or polysiloxanes terminated by trimethylsilyl groups. We utilized this phenomenon for quantitative determination of silanols in polysiloxanes [7]. Replacing $Eu(DPM)_3$ by $Pr(DPM)_3$ in solutions of organosilicon compounds had similar effects to those in solutions of organic compounds; $Eu(DPM)_2$ induces downfield shifts and the praseodymium analogue upfield shifts. For this reason Eu(DPM), is the better reagent for phenylsilanols while Pr(DPM), is advantageous for alkylsilanols.

References

- 1 C.C. Hinckley, J. Amer. Chem. Soc., 91 (1969) 5160.
- 2 J. Reuben, Paramagnetic Lanthanide Shift Reagents in NMR Spectroscopy-Principles, Methodology and Application, Pergamon Press, Oxford, 1973.
- 3 A.F. Cockerill, G.L.O. Davies, R.C. Harden and D.M. Rackham, Chem. Rev., 73 (1973) 553.
- 4 H. Sakurai and J. Hayashi, J. Organometal. Chem., 63 (1973) C7.
- 5 A.F. Cockerill and D.M. Rackham, Tetrahedron Lett., (1970) 5149.
- 6 I.A. Armitrage, L.D. Hall, A.G. Marshall and L.G. Werbelow, in R.E. Sievers (Ed.), Nuclear Magnetic Resonance Shift Reagents, Academic Press, New York and London, 1973, p. 313. 7 A. Lyčka, D. Šnobl, and J. Vencl, Czechoslovak Patent Pending PV 7445-77.